
An Ontology-based Representation of the Twitter REST API

Konstantinos Togias

School of Science and Technology

Hellenic Open University

Patras, Greece

ktogias@eap.gr

Achilles Kameas

School of Science and Technology

Hellenic Open University

Patras, Greece

kameas@eap.gr

Abstract— Social Networking Services (SNS) provide users with

functionalities for developing their on line social networks,

connecting with other users, sharing and consuming content.

While most of popular SNS provide open Web 2.0 APIs, they

remain disconnected from each other thus fragmenting user's

data, social network and content. Semantic social web

technologies such as public vocabularies and ontologies can be

used for bridging the semantic gap between different SNS.

Ontology-based representations of SNS APIs can help developers

share knowledge about SNS APIs and can be used for linking

APIs with public Social Semantic Web ontologies and

vocabularies and for enabling automatic ontology-based service

composition. An ontology based representation has been

proposed for representing the API of the popular SNS Google+.

In this paper, we study the API of Twitter SNS and create an

ontology based representation of its structural and functional

properties. The proposed Twitter REST API ontology reuses

classes of the existing Google+ API ontology and describes

valuable structural and functional details of the API, in a

machine processable format useful for understanding the API

and appropriate for integrating into ontology based Mashups.

Social Networking System; Web Mashup; Social Semantic Web

I. INTRODUCTION

Social Networking Services (SNS) are web applications
that allow users create and maintain an online network of close
friends or business associates [1]. Typical examples of SNS are
Facebook, Myspace, Google+ and Twitter. While SNS have
much common functionality they do not usually interoperate
and therefore require the user to re-enter her profile and
redefine her connections when registering for each service [1].
Also content shared in one SNS is not available to users of
other SNS.

Web 2.0 is a widely-used term characterizing the modern
web made popular by Tim O' Reilly. Web 2.0 is the network as
platform, spanning all connected devices [2]. Web 2.0
applications consume data and services from other applications
and enable the reuse and remixing of their own data and
services through public Application Programming Interfaces
(APIs). Experienced users and programmers use those APIs for
creating new integrated web applications, popular known as
mashups [3] that combine different data sources and APIs into
an integrated end user experience.

Most SNS participate to the Web 2.0 ecosystem by
providing their own open APIs. Those APIs provide a first step
towards bringing down the walls between SNS. Nevertheless,
every SNS use its own terms for defining concepts and
representing resources, while it interconnects the resources it

provides in its own custom way. Thus common concepts,
resources and functionalities are described and provided in
different ways in each SNS API.

The Social Semantic Web is the vision of a Web where all
of the different collaborative systems and SNS, are connected
together through the addition of semantics, allowing people to
traverse across these different types of systems, reusing and
porting their data between systems as required [1]. Social
Semantic Web uses Semantic Web technologies in order to
describe in an interoperable way users' profiles, social
connections and content creation, sharing and tagging accross
different SNS and Sites in the Web.

Ontologies have become the means of choice for
knowledge representation in recent years as they provide
common format and understanding on domain concepts, while
being machine processable [4]. Hendler [5] supports that the
ontology languages of the Semantic Web can lead directly to
more powerful agent-based approaches. Furthermore,
ontologies are used for representing and sharing knowledge
about structural and behavioral properties of software [6], for
building context-aware and pervasive applications [7], and for
achieving context-aware web service discovery and automatic
service composition in Service Oriented Software (SOA)
[8][9].

Web 2.0 APIs, SOA technologies and Social Semantic Web
approaches provide the basic means for bridging the gap
between today’s SNS and for unifying users' data, social
networks and interactions scattered across various SNS.
However, most of today’s SNS APIs lack semantic
representations, while existing Semantic Web Ontologies and
Vocabularies do not provide links with the API resources and
methods used for actually accessing and manipulating users,
social networks and content within SNS. Thus, Social Semantic
Web approaches, SOA service discovery and service
composition techniques cannot be directly applied on them.
Moreover, combining multiple SNS APIs for building Mashups
require for developers to search, read and combine information
from miscellaneous documentation pages scattered across the
web. Using Ontologies for describing those APIs can help
addressing those shortcomings by providing common, machine
processable representations suitable for both sharing
knowledge between developers and achieving automatic
service discovery and service composition in SNS Mashups.
An ontology based representation for the Google+ API has
been proposed in [10].

In this work, we study the REST API provided by Twitter,
one of the most popular SNS and we propose an ontology
based representation of its structural and functional

Draf
t

characteristics. Our ontology reuses and extends the work
presented in [10], is compatible with the technologies of the
Semantic Web and aims to be useful for sharing knowledge
about the Twitter REST API between developers of Web 2.0
Mashups and as part of future inter-operable ontology based
social networking software.

The paper is organized as follows. Section 2 briefly reviews
related work in the areas of Social Semantic Web, Web 2.0
Mashups, ontology representation of software properties, and
Service Oriented Architectures (SOA). Section 3 presents the
proposed ontology-based representation of Twitter REST API.
Section 4 discusses the representation and visualization of the
ontology, while Section 5 presents test queries run on the
proposed ontology. Section 6 presents conclusions and
suggestions for future work.

II. RELATED WORK

Berslin and Decker [11] and Berslin et al. [1] propose the
use of Semantic Web mechanisms in order to bridge the
isolation and fragmentation of todays SNS. Public vocabularies
and ontologies can be used to give meaning to Social Networks
and interconnect social websites. The FOAF ontology [12]
provides a formal, machine readable representation of user
profiles and friendship networks. The SIOC Core Ontology
provides the main concepts and properties required to describe
information from online communities (e.g. message boards,
wikis, weblogs, etc.) on the Semantic Web [13]. The SIOC and
FOAF ontologies are used in combination with metadata
vocabularies like Dublin Core [14] and SKOS [15] for
describing user-generated content on the Social Web. Zhou and
Wu in [16] propose an ontology representing SNSs based on
FOAF in order to resolve the problem of social data
inconsistency and to achieve interoperability among multiple
social network services. Their ontology defines some of the
basic attributes of a generic SNS API, such as operations,
arguments and responses, combined with some user profile and
contact attributes borrowed by FOAF ontology, but it does not
provide any structural description of the resources that can be
accessed through it. While the above approaches describe
generic concepts about people, content and SNS, they do not
describe the functional and structural aspects of specific SNS
APIs necessary for building ontology based Mashups.

The Google+ API Ontology presented in [10] describes the
structural and functional properties of the Google+ API. While
the Google+ API ontology provides specific instances
describing the resources and actions provided by Google+ API,
it also defines generic classes describing APIs, types of APIs,
authorization protocols, actions, types of resources, parameters,
data formats, fields and value types. Those concepts are also
useful for describing the Twitter REST API, as it also involves
resource types, actions, parameters and values.

Hartmann et al. [17], Zang et al. [3], and Wong and Hong
[18] investigate how users with programming skills and
programmers build Mashups that make use of public APIs
provided by popular web 2.0 services. Most of those users are
self-taught and depend on the documentation of the API they
want to use. Some of the most common problems encountered
when creating Mashups is the complexity of communicating
data from one server to another and the lack of proper tutorials
and examples in the documentation [3].

Dietrich and Elgar [6] propose that knowledge about
structural and behavioural properties of software can be shared
across the software engineering community in the form of
design patterns expressed in the web ontology language
(OWL). The inherent advantage of their approach is that it
yields descriptions that are machine processable, but also
suitable for a community to share knowledge taking advantage
of the decentralized infrastructure of the Internet [6]. Ontology-
based representations of SNS APIs can bring the same
advantages for the community of Mashup developers.

Kurkovsky, Strimple and Nuzzi in [19] discuss the
possibility of convergence of Web 2.0 and SOA, while Xiao et
al [8][9] propose the use of ontologies for context-aware web
service discovery and automatic service composition. The
availability of ontology-based representations of SNS APIs can
also help to build software able to automatically compose
services that integrate data and functionality from SNS.

Our work takes into consideration and the above works by
reusing and extending the classes defined in Google+ API
ontology, in order to provide an ontology-based representation
of Twitter REST API, compatible with Semantic Web
mechanisms and ontology based service discovery and
composition approaches that can be used for knowledge
sharing and as part of ontology-based Mashups that integrate
Twitter functionality and data.

III. AN ONTOLOGY BASED REPRESENTATION OF THE

TWITTER REST API

Twitter is a popular online SNS and microblogging service
that enables its users to send and read text-based posts of up to
140 characters, known as "tweets". The service was launched
on July 2006. It rapidly gained worldwide popularity, with over
140 million active users as of 2012 generating over 340 million
tweets daily and handling over 1.6 billion search queries per
day [20] [21].

Twitter REST API follows a RESTful API design, meaning
that applications use standard HTTP methods to retrieve and
manipulate Twitter resources. Many API calls require that the
user of the application is granted permission to access their
data. Twitter uses the OAuth 2.0 [22] protocol to allow
authorized applications to access user data. Resources in the
Twitter REST API can be represented using JSON, XML, RSS,
or ATOM data formats. It also supports pagination. The API
provides HTTP GET and POST methods for reading and
creating, updating or destroying resources. The authors of the
documentation of Twitter REST API have grouped the
methods provided by the API into 20 main categories:
Timelines, Tweets, Search, Streaming, Direct Messages,
Friends & Followers, Users, Suggested Users, Favorites, Lists,
Accounts, Notification, Saved Searches, Places & Geo, Trends,
Block, Spam Reporting, OAuth, Help, Legal, Deprecated.
Twitter also provides free client libraries for various
programming languages including Python, PHP, Ruby,
Javascript and Java.

In order to describe the structural and functional properties
of Twitter REST API in a way that can be shared among
Software Developers and automatically interpreted by software
components, we have introduced an ontology based
representation of its main characteristics, resources and actions.

Draf
t

For designing our ontology we followed the steps described by
Noy and MacGuinness in [23]:

A. Specification of the domain and the purpose of the

ontology

The domain of the ontology is the Twitter API and more
specifically its structural and functional properties. That is, the
data interchange and authentication methods it uses, the types
of entities that can be accessed through it and their attributes,
and the actions that can be performed through it on these
entities. The purpose of the ontology is dual: On the one hand
the ontology is playing the role of a shareable and browsable
knowledge base for researchers and programmers that want to
develop applications and Mashups that integrate Twitter data
and functionality, while on the other hand, because of its
machine interpretable format, it may be used for building inter-
operable ontology based social networking software. Such
software will be programmed in a higher level of abstraction
and use automatic reasoning on ontologies for providing
integration with Twitter.

B. Enumeration of important terms in the ontology

For enumerating the important terms in the ontology we
studied the Twitter REST API documentation available online
[24]. Through the documentation pages we identified
references to key terms such as “Authorization”, “Field”,
“Parameter”, “Response Format”, “Method”, “HTTP Method”
and “Response Object”.

Figure 1. The classes and class hierarchy of Twitter REST API ontology.

C. Considering reusing existing ontologies

The Google+ API ontology proposed in [10] provides
classes and properties for describing the structural and
functional properties of a RESTfull API. The classes API,
Parameter, Field, ValueType, DataStructure,
AuthorizationProtocol and APIType, defined in Google+ API
ontology can also be used for describing the Twitter REST
API. Other important terms identified in Twitter REST API
documentation pages, such as “Response Format”, “Method”,
“HTTP Method” and “Response Object” can be described by

DataFormat, Action, ActionType and ResourceType classes of
the Google+ API ontology. So we decided to reuse and extend
the classes defined in Google+ API ontology for building
Twitter REST API ontology.

D. Specification of the classes of the ontology and class

hierarchy

As we stated above, we reused the classes of the ontology
defined in [10]. In order to adapt our ontology to the
terminology used in the Twitter REST API we defined the
following new classes: ResponseFormat is a subclass of
DataFormat, Method class is equivalent to class Action,
HTTPMethod class is equivalent to class ActionType and
ResponseObject class is equivalent to class ResourceType.
Thus, our ontology provides the following classes: API (an
API), APIType (an API type), DataFormat (a data interchange
format), ResponseFormat (a data interchange format used in
responses sent by the API), AuthorizationProtocol (an
authorization protocol used to access the API), ResourceType
(a resource type provided by the API), ResponceObject
(equivalent to ResourceType), Field (a field of a resource;
fields represent attributes of a resource), Action (an action that
can be performed to Resource), Method (equivalent to Action),
ActionType (an action type), HTTPMethod (equivalent to
ActionType), Parameter (a parameter of an action), ValueType
(the type of the value contained in a field or a parameter) and
DataStructure (the type of the data structure contained in a
field or a parameter).

E. Specification of the properties of the classes

At this step we found that the analysis performed in [10] for
Google+ API ontology is also applicable for describing Twitter
REST API. Google+ API ontology defines the connectsWith
object property of Field Class for describing the connection
between resource types through their fields. Such connections
where also identified from the study of the Twitter REST API.

This type of connections is not clearly presented in the
Twitter REST API documentation, and a developer has to
study the detailed documentation of the responses of various
actions in order to detect it. Thus, we re-used the connectsWith
object property and all the other properties defined in Google+
API ontology for Twitter REST API ontology. Figure 1 depicts
the classes and object properties of the Twitter REST API
ontology.

Figure 2. Properties and value types of Action and Field classes.

Draf
t

F. Specification of the value types and restrictions of the

properties

The analysis made in [10] was also applicable in our
ontology, so we used the same value types and restrictions.
Figure 2 lists the properties and their value types for the API
and ResourceType classes.

G. Creation of instances

We derived the Instances of the ontology from the
documentation of the API. We represented the Twitter REST
API with an instance of the API class. Since Twitter REST API
is a Restful API, we re-used the RestfullAPI instance of the
APIType class defined in Google+ API Ontology. The API can
encode responses in JSON, XML, RSS and ATOM formats, so
in addition to the JSON instance of DataFormat class defined
in Google+ API Ontology we created instances for XML, RSS
and ATOM. The API also uses the OAuth authentication
protocol for granting access to applications, so we reused the
OAuth instance of the AuthorizationProtocol Class. Twitter
REST API provides HTTP GET methods for reading data and
HTTP POST methods for writing, updating or deleting data.
Thus, in addition to the GET instance of ActionType Class, we
also defined an instance named POST, for representing HTTP
POST action types.

After studying the parameters and return values of the
Actions provided by the API, we found out that in addition to
the 5 instances of the ValueType class identified in [10], that
are also applicable for describing Twitter REST API, the API
also uses decimal numbers as values of fields. So, the identified
instances of the ValueType class are the following 6: String,
UnsignedInteger, Boolean, DateTime, ResourceType, and
Decimal.

The two instances of the DataStructure class, named
SingleValue and List, identified in Google+ API Ontology
where also re-used in Twitter REST API ontology.

The documentation of the API explicitly specifies four
main response objects (Tweets, Users, Entities and Places), but
with a more thorough study we identified a much larger
number of resource types. Some of them can be directly
accessed through actions provided by the API, while other can
be accessed through the fields of other resource types. In our
ontology we defined all the identified resource types as
instances of ResourceType Class. Thus we created 44 instances
of the ResourceType class described in Table 1.

TABLE I. INSTANCES OF THE RECOURCETYPE CLASS

ResourceType

Instance
Description

Connections
Connections of the authenticating user to

other users

DirectMessage
A private message sent from a user to another

user

DirectMessages
Direct messages sent to the authenticating

user

DirectMessagesSent
Direct messages sent from the authenticating

user

Entity
Metadata and additional contextual

information about content posted on Twitter

EntityHashTags
Hashtags which have been parsed out of a

Tweet text

EntityMedia Media elements uploaded with a Tweet

ResourceType

Instance
Description

EntityUrls URLs included in the text of a tweet

EntityUserMentions
Other Twitter users mentioned in the text of a

Tweet

Favorites Favorite statuses

FollowersIds
Numeric IDs of users that follow the

authenticating user

FriendsIds
Numeric IDs of users that the authenticating

user is following

FriendshipsIncoming
Users that have a pending request to follow

the authenticating user

FriendshipsLookup
The connections of the authenticating user to

other users

FriendshipsNoRetweet

Ids

The users that the authenticating user does

not want to see retweets from

FrienshipsOutgoing
Users for whom the authenticating user has a

pending follow request

Help
The current configuration options used by

Twitter

HomeTimeline
Statuses, including retweets if they exist,

posted by the user and the user's they follow

Language A language supported by Twitter

Legal Twitter legal documents

TwitterList
A collection of tweets, posted by users

belonging to a curated list

Mentions Tweets mentioning the user

Place A geographical place

PublicTimeline
List of statuses, including retweets if they

exist, from non-protected users

Relationship The connection between 2 users

RelationshipSource The user that is the subject of a relationship

RelationshipTarget The user that is the target of a relationship

RetweetedByMe Retweets posted by the authenticating user

RetweetedByUser Retweets posted by a user

RetweetedToMe
Retweets posted by users the authenticating

user follows

RetweetedToUser Retweets posted by users a user follows

RetweetsOfMe
Tweets of the authenticating user that have

been retweeted by others

SavedSearch A saved search query

Search Tweets that match a specified query

Status A tweet

Trend A popular topic in Twitter

User A user of Twitter

UserCategory Categeory of users

UserTimeline
List of tweets posted by the authenticating

user

UsersContributees Users that the specified user can contribute to

UsersContributors Users that can contribute to the specified user

UsersLookup Extended information about users

UsersSearch
List of users similar to that returned by the

“find people” button on Twitter.com

UsersSuggestions List of suggested user categories

Draf
t

Finally, we created an instance of Field class for every
property of every ResourceType, an instance of Action class for
every action presented in the documentation of the API, and an
instance of the Parameter class for every action parameter.

IV. IV. REPRESENTATION AND VISUALIZATION OF THE

ONTOLOGY

For the representation of the ontology we used the
RDF/XML exchange syntax for the OWL ontology language.
We used VIM text editor for editing the XML expressions of
the classes and the properties and the specialized ontology
editing software Protégé for checking the ontology, creating
instances, and producing visualizations.

Figure 3 is a visualization depicting the connections
detected between User and Status resource types in the
ontology. From this visualization we observe for example that a
resource of type User can be a follower or a friend of another
User resource. A User can also be the user (i.e. owner) or
retweeter of a Status. Moreover, a Status can reply to a User.

Figure 3. Connections between between User and Status resource types in

the ontology.

V. TEST QUERIES

In order to test the proposed ontology we run test queries
regarding the completeness and correctness of the resulting
ontology and validated the results. We queried for all class
instances and their properties and cross-checked the returned
results with the API documentation pages. We also made sure
that all the identified instances were returned.

We also the run two sets of usage test queries and verified
the returned results. For the first set of queries, we tried to
extract information useful for developers that wish to use the
API for building Mashups. Such queries are: (1) What
authentication protocol is supported by Twitter API? (2) What
is the API's documentation url? (3) What actions and what
parameters can be used for directly accessing a User resource?
(4) What resources can be directly accessed through the API?
(5) What are the resource types that provide a second rank
reference to the User resource type (i.e. Have a field that
connects to a resource type that has a field that connects to
User)?

For the second set of queries we assumed that the ontology
is used in ontology-based software for automatically invoking
API's methods. Such software needs to extract low-level
information about the actual method calls needed for
performing an action and the structure of the data needed to be
exchanged. Some example queries of this type are the
following: (1) What is the APIs base url? (2) What are the data
formats supported by the API? (3) What is the urlMask of an
Action? (4) What fields are contained in a User resource type
and what value type and data structure is each of them?

Figure 4. SPARQL query for getting all the resource types that provide

second rank access to User resource type.

Moreover if such software is programmed in a higher level
of abstraction, it may execute complex queries on the ontology
in order to combine data form multiple API resources or to
translate generic actions into sequences of API calls. For
example: (1) What resource types that can be directly accessed

Draf
t

through a GET Action provide a reference to an Status resource
type? (2) What POST Actions are provided by TwitterList
resource type?

We expressed the above queries in the SPARQL ontology
querying language and executed using Protege. Figure 4
depicts a usage test query and the returned results.

VI. CONCLUSIONS AND FUTURE WORK

Ontology-based representations of SNS APIs can help
developers comprehend the structure and functionalities of
SNS and their APIs and share this knowledge. Moreover they
can be used to link those APIs with public Social Semantic
Web ontologies and vocabularies and for enabling automatic
ontology-based service composition.

In this work we studied the REST API provided by Twitter
SNS and created an ontology based representation of its
structural and functional properties. For designing the ontology
we followed the methodology proposed by Noy and
MacGuinness in [23]. We re-used and extended the classes and
properties of the Google+ API ontology [10] for building the
Twitter REST API ontology. We tested the resulting ontology
with SPARQL queries. The proposed ontology reveals the
existence of important resources and connections between them
that are not clearly presented in the official documentation. We
identified a total of 44 resource types in Twitter REST API
connecting with each other in various ways. We have made the
ontology publicly accessible in OWL format at
http://goo.gl/YSbFb.

In this work, we focused on representation of the basic
structural and functional features of Twitter REST API such as
the resources it provides, the way they connect with each other
and the actions they provide. We would like to extend the
ontology with descriptions of the authentication process, the
manipulation of paging and partial queries and bindings of the
actions to client libraries method calls, in order to support
automatic invocation of the API calls from ontology driven
applications. Moreover, we plan to explore ontology evolution
techniques for updating the ontology on the release of API
updates. In the near future we would also like to connect the
ontology with the Google+ API Ontology [10] and other
ontologies and vocabularies like FOAF and SIOC that describe
more abstract concepts about users, social networks and
content. Finally, we would like to create ontology based
representations for the APIs provided by other popular SNS
such as Facebook and LinkedIn and to use them for building
ontology-based mashups that automatically combine data and
functionalities from multiple SNS.

ACKNOWLEDGMENT

This research described in this paper was partly funded by
the National Strategic Reference Framework programme 2007-
2013, project MIS 296121“Hellenic Open University”.

REFERENCES

[1] J.G. Breslin, A. Passant, and S. Decker , “The Social Semantic Web”,
Springer-Verlang Berlin Heidelberg, 2009

[2] Tim O'Reilly, “What Is Web 2.0: Design Patterns and Business Models
for the Next Generation of Software”, Published in: International Journal
of Digital Economics No. 65, March 2007, pp. 17-37.

[3] N. Zang, M.B. Rosson, and V. Nasser, “Mashups: who? What? Why?”,
In: CHI 2008: CHI 2008 extended abstracts on Human factors in
computing systems, ACM, New York, 2008, pp. 3171-3176.

[4] T. R. Gruber, “Toward Principles for the Design of Ontologies Used for
Knowledge Sharing”, In International Journal of Human-Computer
Studies, Vol 43 Issue 5-6, Nov./Dec. 1995, pp. 907-928.

[5] J. Hendler, “Agents and the Semantic Web”, In IEEE Intelligent
Systems, Vol. 16 No 2, 2001, pp. 30-37.

[6] J. Dietrich and C. Elgar, “Towards a web of patterns”, In: Web
Semantics: Science, Services and Agents on the World Wide Web, vol.
5, num. 2, Elsevier, 2011.

[7] B. Guo, D. Zhang, and M. Imai, “Toward a cooperative programming
framework for context-aware applications”, In Personal and Ubiquitous
Computing, Vol 15, Issue 3, March 2011, pp. 221-233.

[8] H. Xiao et al, “An automatic approach for ontology-driven service
composition”, Proc. IEEE International Conference on Service-Oriented
Computing and Applications (SOCA) 2009, Taipei, Taiwan, 14-15
December 2009, pp 1-8.

[9] H. Xiao et al, “An Approach for Context-Aware Service Discovery and
Recommendation”, Proc., IEEE International Conference on Web
Services (ICWS), 5-10 July 2010, Miami, FL, 2010, pp. 163 – 170.

[10] K. Togias and A. Kameas, “An Ontology-based reperesentation of the
Google+ API”, Proc., The Third International Conference on Models
and Ontology-based Design of Protocols, Architectures and Services
MOPAS 2012, Chamonix Mont-Blanc, May 2012, pp 15-20.

[11] J. Berslin and S. Decker, “The Future of Social Networks on the
Internet: The Need for Semantics”, IEEE Internet Computing, vol. 11,
November 2007, pp. 86-90.

[12] The Friend of a Friend (FOAF) project, online at http://goo.gl/Rdpja,
retrieved July 2012.

[13] U. Bojārs and J.G. Breslin (editors), “SIOC Core Ontology
Specification”, W3C Member Submission 12 June 2007, online at
http://goo.gl/8OQV1, 2007, retrieved July 2012.

[14] Dublin Core Metadata Initiative, “Dublin Core Metadata Element Set”,
Version 1.1, online at http://goo.gl/MHLlw, 2010, retrieved July 2012.

[15] A. Miles and S. Bechhofer (editors), “SKOS Simple Knowledge
Organization System Reference”, W3C Recommendation 18 August
2009, online at http://goo.gl/ypDOU, 2009, retrieved July 2012.

[16] B. Zhou and C. Wu, “Social networking interoperability through
extended FOAF vocabulary and service”, Proc. 3rd International
Conference on Information Sciences and Interaction Sciences (ICIS),
23-25 June 2010, Chengdu, China, 2010, pp. 50 – 55.

[17] B. Hartman, S. Doorley, and S.R. Klemmer, “Hacking, Mashing,
Gluing: Understanding Opportunistic Design”, in IEEE Pervasive
Computing, vol. 7 issue 3, July 2008.

[18] J. Wong, J. and J. Hong, “What do we "mashup" when we make
mashups?”, Proc. WEUSE '08: Proceedings of the 4th international
workshop on End-user software engineering, 2008.

[19] S. Kurkovsky, D. Strimple, and E. Nuzzi, “Convergence of Web 2.0 and
SOA: Taking Advantage of Web Services to Implement a Multimodal
Social Networking System”, proc. 11th IEEE International Conference
on Computational Science and Engineering - Workshops, 2008, pp. 227-
232.

[20] Wikipedia, Twitter, online at http://goo.gl/MQ3g, retrieved July 2012.

[21] Twitter Search Team (2011-05-31). "The Engineering Behind Twitter’s
New Search Experience". Twitter Engineering Blog (blog of Twitter
Engineering Division), online at http://goo.gl/Cgdly, retrieved July 2012.

[22] E. Hammer-Lahav (editor), “The OAuth 1.0 Protocol, Internet
Engineering Task Force (IETF)”, online at http://goo.gl/eN6VT, April
2010, retrieved July 2012.

[23] N. F. Noy and D. L. McGuinness, “Ontology development 101: a guide
to creating your first ontology”. Technical Report KSL-01-05 and
Stanford Medical Informatics Technical Report SMI-2001-0880.
Stanford Knowledge Systems Laboratory. Available at
http://goo.gl/kr6n4, 2001, retrieved July 2012.

[24] Twitter, Inc., “Twitter REST API”, online at http://goo.gl/4NKb3,
retrieved July 2

Draf
t

